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ABSTRACT 

Machine learning (ML) models require large datasets which may be siloed across different 

healthcare institutions. Using federated learning, a ML technique that avoids locally aggregating 

raw clinical data across multiple institutions, we predict mortality within seven days in 

hospitalized COVID-19 patients. Patient data was collected from Electronic Health Records 

(EHRs) from five hospitals within the Mount Sinai Health System (MSHS). Logistic Regression 

with L1 regularization (LASSO) and Multilayer Perceptron (MLP) models were trained using 

local data at each site, a pooled model with combined data from all five sites, and a federated 

model that only shared parameters with a central aggregator. Both the federated LASSO and 

federated MLP models performed better than their local model counterparts at four hospitals. 

The federated MLP model also outperformed the federated LASSO model at all hospitals. 

Federated learning shows promise in COVID-19 EHR data to develop robust predictive models 

without compromising patient privacy.  
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INTRODUCTION 

Background and Significance 

Coronavirus disease 2019 (COVID-19) has led to over 700,000 deaths worldwide and other 

devastating outcomes.[1] Clinical manifestations occur in heterogeneous patterns that are not 

yet well understood, creating an urgent need to understand factors that lead to negative 

outcomes to aid delivery of more tailored treatments. This task requires learning from large, 

diverse patient populations. However, pertinent patient data are siloed within hospitals 

worldwide. While many studies have produced significant findings in regards to COVID-19 

outcomes using data from single hospitals, larger representation from additional populations is 

needed to derive generalizable outcomes, especially within the context of machine learning 

(ML).[2-11] Large-scale initiatives such as the National COVID Cohort Collaborative and the 

4CE Consortium have joined globally distributed hospitals to examine association analyses, but 

meta-analysis does not allow joint machine learning from diverse patient data.[12-13]  

In light of patient privacy, federated learning is emerging within the biomedical field as a 

promising strategy particularly in the context of COVID-19 where patient data are fragmented 

across health systems which are not representative of the entire population, leading to 

predictions that may not be generalizable.[14] Briefly, federated learning allows for 

decentralized refinement of independently built  ML models. This is done via iterative exchange 

of model parameters to a central aggregator without sharing raw data. 

A limited number of studies have assessed ML models within a federated learning framework 

for outcome prediction in COVID-19 but show promise. Kumar et al. built a blockchain-based 

federated learning schema and achieved enhanced sensitivity for COVID-19 detection from lung 

CT scans.[15] Xu et al. used deep learning to identify COVID-19 on CT scans from multiple 

hospitals in China [16] and found that models built on hospitals in one region did not generalize 
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well to others, but were able to achieve considerable performance gains when using a federated 

learning approach. For more detailed background regarding COVID-19, ML in the context of 

COVID-19, challenges for multi-institutional collaborations, and federated learning, see 

Supplementary Materials.  

While it has been proposed, to our knowledge there are no published studies that implement 

and assess the utility of federated learning to predict COVID-19 outcomes from Electronic 

Health Record (EHR) data.[17] In this work, we are the first to build federated learning models to 

predict mortality in patients diagnosed with COVID-19 within seven days of hospital admission 

using EHR data.  

MATERIALS AND METHODS 

Clinical Data Source and Study Population 

Data from COVID-19 positive patients (n=4029) were derived from Epic EHR systems of five 

hospitals within the Mount Sinai Health System (MSHS) in New York City (NYC): Mount Sinai 

Brooklyn (MSB; n=611); Mount Sinai Hospital (MSH; n=1644); Mount Sinai Morningside (MSM); 

n=749); Mount Sinai Queens (MSQ; n=540); and Mount Sinai West (MSW; n=485). A schematic 

of all study inclusion criteria is shown in Figure 1A, further detailed in Supplementary Materials. 

Details on cross-hospital demographic and clinical comparisons are also in the Supplementary 

Materials. 

Study Design 

We performed multiple experiments as outlined in Figures 1B and 1C (see Model Development 

and Selection). First, we developed classifiers using and testing on local data from each hospital 

separately. We also built a federated learning model by averaging the parameters of models 
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from each individual hospital. Finally, we combined all individual hospital data into a superset to 

develop a “pooled” model. Although the pooled model is not practically feasible, it represents an 

ideal framework.  

Data included demographics, past medical history, vital signs, lab tests, and outcomes for all 

patients (Table 1, Supplementary Table 1). Due to varying prevalence across hospitals, we 

assessed multiple class balancing techniques (Supplementary Table 2). To simulate federated 

learning in practice, we also performed experiments with the addition of Gaussian noise (see 

Supplementary Materials).  

Table 1: Demographics of Hospitalized COVID-19 Patients.  

  

Mount Sinai 
Brooklyn 

(MSB) 

Mount Sinai 
Hospital 
(MSH) 

Mount Sinai 
Morningside 

(MSM) 

Mount Sinai 
Queens 
(MSQ) 

Mount 
Sinai West 

(MSW) P-Value 

(N) 611 1644 749 540 485   

Gender, n (%)   

Male 338 (55.3) 951 (57.8) 411 (54.9) 344 (63.7) 257 (53.0) 
0.004 

Female 273 (44.7) 693 (42.2) 338 (45.1) 196 (36.3) 228 (47.0) 

Age, median (IQR) 
72.5 

[63.6,82.7] 
63.3 

[51.3,73.2] 
69.8 

[57.4,80.3] 
68.1 

[57.1,78.8] 
66.3 

[52.5,77.6] <0.001 

Ethnicity, n (%)   

Hispanic 21 (3.4) 460 (28.0) 259 (34.6) 198 (36.7) 111 (22.9) 
<0.001 non-Hispanic 416 (68.1) 892 (54.3) 452 (60.3) 287 (53.1) 349 (72.0) 

Unknown 174 (28.5) 292 (17.8) 38 (5.1) 55 (10.2) 25 (5.2) 

Race, n (%)   

Asian 13 (2.1) 83 (5.0) 16 (2.1) 56 (10.4) 27 (5.6) 

<0.001 

Black/African 
American 323 (52.9) 388 (23.6) 266 (35.5) 64 (11.9) 109 (22.5) 

Other 54 (8.8) 705 (42.9) 343 (45.8) 288 (53.3) 164 (33.8) 

Unknown 27 (4.4) 87 (5.3) 25 (3.3) 14 (2.6) 14 (2.9) 

White 194 (31.8) 381 (23.2) 99 (13.2) 118 (21.9) 171 (35.3) 
Past Medical 
History   
Acute Myocardial 
Infarction 14 (2.3) 16 (1.0) --- 15 (2.8) 7 (1.4) 0.006 
Acute Respiratory 
Distress Syndrome 
(ARDS) --- 28 (1.7) --- --- --- <0.001 
Acute Venous 
Thromboembolism --- 11 (0.7) --- --- --- 0.74 
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Asthma --- 100 (6.1) 39 (5.2) 19 (3.5) 27 (5.6) <0.001 

Atrial Fibrillation 23 (3.8) 113 (6.9) 44 (5.9) 49 (9.1) 28 (5.8) 0.005 

Cancer 22 (3.6) 190 (11.6) 47 (6.3) 21 (3.9) 41 (8.5) <0.001 
Chronic Kidney 
Disease (CKD) 46 (7.5) 208 (12.7) 75 (10.0) 81 (15.0) 33 (6.8) <0.001 
Chronic Obstructive 
Pulmonary Disease 
(COPD) 11 (1.8) 64 (3.9) 31 (4.1) 28 (5.2) 19 (3.9) 0.044 
Chronic Viral 
Hepatitis --- 17 (1.0) 14 (1.9) --- --- 0.021 
Coronary Artery 
Disease (CAD) 56 (9.2) 168 (10.2) 92 (12.3) 82 (15.2) 51 (10.5) 0.008 

Diabetes mellitus 93 (15.2) 351 (21.4) 165 (22.0) 154 (28.5) 76 (15.7) <0.001 

Heart Failure 36 (5.9) 110 (6.7) 61 (8.1) 43 (8.0) 30 (6.2) 0.383 
Human 
Immunodeficiency 
Virus (HIV) --- 32 (1.9) 11 (1.5) --- 14 (2.9) 0.001 

Hypertension 112 (18.3) 549 (33.4) 249 (33.2) 225 (41.7) 139 (28.7) <0.001 
Intracerebral 
Hemorrhage --- --- --- --- --- 0.243 

Liver Disease --- 53 (3.2) 15 (2.0) 15 (2.8) --- <0.001 

Obesity --- 176 (10.7) 74 (9.9) 38 (7.0) 29 (6.0) <0.001 
Obstructive Sleep 
Apnea (OSA) --- 54 (3.3) 15 (2.0) --- --- <0.001 

Stroke --- 24 (1.5) --- --- --- 0.054 
Mortality within 7 
days, n (%) 148 (24.2) 118 (7.2) 93 (12.4) 124 (23.0) 27 (5.6) <0.001 
 

Table 1. Demographics of Hospitalized COVID-19 Patients.  

Demographics (age, gender, ethnicity, race, and past medical history) for all patients (N = 4029) 

included in study. Inter-hospital comparisons for categorical data were assessed with chi-square 

tests and numerical data using Kruskal-Wallis tests with Bonferroni-adjusted p-values reported. 

Values with fewer than ten patients per field are not provided to protect patient privacy. 

To promote replicability, we placed our study within the Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines (Supplementary 

Table 3) and released our code under the GPLv3 license (Supplementary Materials). Software 

information can be found within the Supplementary Materials. 
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Definition of Outcomes 

The primary outcome was mortality within seven days of admission. 

Model Development and Selection 

We generated two baseline conventional predictive models – a multilayer perceptron (MLP) and 

logistic regression with L1-regularization, or least absolute shrinkage and selection operator 

(LASSO). For consistency and to enable direct comparisons, each MLP model was built with the 

same architecture. We provide more information on model architecture and tuning in the 

Supplemental Materials. MLP and LASSO models were fit on all five hospitals. 

Our primary model of interest was a federated learning model. In this model, training was 

performed in different sites, and parameters were shared to a central location, as depicted in 

Figure 1C. The process was as follows: a central aggregator initialized the federated model with 

random parameters. This model was sent to each site, then trained for one epoch. Next, model 

parameters were sent back to the central aggregator where federated averaging was 

performed. Updated parameters from the central aggregator were then sent back to each site, 

and this cycle was repeated for multiple epochs. Federated averaging scales the parameters of 

each site according to the number of available data points and sums all parameters by layer. 

Through this technique, federated models did not receive any raw data. 

Experimental Evaluation 

All models were trained and evaluated using 10-fold stratified cross validation. We utilized the 

models’ probability scores to calculate areas under the receiver operating characteristic curve 

(AUC-ROC) with averages across the 10 folds. 
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RESULTS 

Intercohort Comparisons 

EHR data consisted of patient demographics, past medical history (Table 1), and admission 

vitals and labs (Supplementary Table 1). We found significant differences across hospitals in the 

proportion of outcome, specifically mortality within seven days (p<0.001), which ranged from 

5.6% to 24.2% (Table 1). There were also significant differences in gender (p=0.004), age 

(p<0.001), ethnicity (p<0.001), and race (p<0.001). We found significant differences in the 

majority of key clinical features such as past medical history like asthma (p<0.001) and relevant 

lab tests including white blood cell counts (p<0.001; Supplementary Table 1). 

 

Classifier Training and Performance  

LASSO and MLP models trained on data from each of the five MSHS hospitals (sites) 

separately (local), combined dataset (pooled), and via a federated learning framework 

(federated). All three training strategies for both models were evaluated on all sites (Figure 1B, 

Figure 1C). Results for model optimization (Supplementary Figure 2) and class balancing 

experiments (Supplementary Table 2) can be found in the Supplementary Materials. Final 

model hyperparameters are listed in Supplementary Table 4. 

 

Learning Framework Comparisons 

Performance of all LASSO and MLP models (local, pooled, federated) was assessed at each 

site (Table 2, Figure 3). Federated LASSO outperformed the site’s local LASSO at all sites 

except MSQ, with AUC-ROC ranging from 0.693 to 0.805. LASSO pooled outperformed 

federated LASSO at all five sites and had AUC-ROCs ranging from 0.736 to 0.822.  
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Table 2: Model Performance By Site. 

    

Mount Sinai 
Brooklyn 

(MSB) 

Mount Sinai 
Hospital 
(MSH) 

Mount Sinai 
Morningside 

(MSM) 

Mount Sinai 
Queens 
(MSQ) 

Mount 
Sinai West 

(MSW) 

Patients   611 1644 749 540 485 

LASSO 

Local 
0.800 (0.742 - 

0.857) 
0.704 (0.643 - 

0.764) 
0.676 (0.619 - 

0.734) 
0.733 (0.680 - 

0.786) 

0.454 
(0.281 - 
0.626) 

Pooled 
0.816 (0.759 - 

0.872) 
0.797 (0.762 - 

0.831) 
0.791 (0.746 - 

0.835) 
0.736 (0.693 - 

0.779) 

0.822 
(0.735 - 
0.909) 

Federated 
0.802 (0.747 - 

0.857) 
0.773 (0.740 - 

0.807) 
0.776 (0.725 - 

0.828) 
0.693 (0.643 - 

0.744) 

0.805 
(0.726 - 
0.885) 

MLP 

Local 
0.833 (0.792 - 

0.873) 
0.762 (0.710 - 

0.814) 
0.739 (0.679 - 

0.799) 
0.795 (0.756 - 

0.834) 

0.739 
(0.613 - 
0.864) 

Pooled 
0.825 (0.774 - 

0.876) 
0.761 (0.687 - 

0.835) 
0.726 (0.671 - 

0.782) 
0.754 (0.721 - 

0.788) 

0.829 
(0.742 - 
0.916) 

Federated 
No Noise 

0.827 (0.771 - 
0.883) 

0.801 (0.743 - 
0.858) 

0.796 (0.733 - 
0.858) 

0.822 (0.786 - 
0.858) 

0.834 
(0.742 - 
0.925) 

Federated 
With 
Noise 

0.812 (0.754 - 
0.869) 

0.767 (0.710 - 
0.825) 

0.785 (0.724 - 
0.846) 

0.822 (0.789 - 
0.855) 

0.830 
(0.743 - 
0.917) 

 

Table 2. Model Performance Across Sites.  

Performance of local, pooled, and federated LASSO and MLP models at each site as measured 

by area under the receiver-operating characteristic (AUC-ROC) with 95% confidence intervals. 

MLP pooled performed worse than local MLP at all hospitals except MSW, with MLP pooled 

AUC-ROCs varying from 0.754 to 0.829 while local MLP achieved AUC-ROCs ranging from 

0.739 to 0.833. Federated MLP performed better than local MLP at all hospitals except MSB 

and performed better than the MLP pooled at all sites.  

 

Cross-model Comparisons 

Local MLP outperformed local LASSO at all hospitals. Federated MLP surpassed federated 

LASSO at all sites. While performance varied slightly among both classifiers in different 

experiments, federated MLP consistently outperformed all other tested models at all hospitals 
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except MSB. Additional performance metrics (AUPRC, accuracy, sensitivity, specificity, and F1-

score) are described in Supplementary Table 5. 

 

 

Effect of Gaussian Noise 

Gaussian noise introduced into federated MLP led to decreased performance at all sites except 

MSQ, where both had AUC-ROCs of 0.822. AUC-ROCs ranged from 0.796 to 0.834 in 

federated MLP without noise and 0.767-0.830 in federated MLP with noise (Supplemental 

Figure 1).  

DISCUSSION 

To our knowledge, this is the first study to evaluate the efficacy of applying federated learning to 

predict mortality for COVID-19 using clinical data from EHRs. The data from the five hospitals 

used in this study represent a demonstrative use-case for this experiment. With disparate 

patient characteristics per hospital in terms of demographics, outcomes, sample size, and lab 

values, this study reflects a real-world scenario where federated learning can be leveraged for 

hospitals with diverse patient populations.  

 

The primary findings of this study demonstrate that federated MLP and LASSO models 

outperformed their respective local models at most sites. Federated LASSO did not outperform 

pooled LASSO at any hospital. Federated MLP outperformed local MLP and federated LASSO 

at all hospitals. Federated MLP also outperformed pooled MLP at all sites which might be due to 

the experimental condition where the same underlying architecture was used for all MLP 

models. While this framework allowed for consistency in comparisons across learning 

strategies, it may have led to improper tuning of the pooled models. Collectively, these results 

exhibit the potential of federated learning to overcome drawbacks of fragmented local models. 
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Future inclusion of more sites into the federated learning network could continue to bridge the 

gap between pooled models, especially for LASSO.  

 

Our results illustrate scenarios in which federated models should either be approached with 

caution or favored. MSQ was the only hospital where federated LASSO performed slightly 

worse than the local model with a difference of 0.04 in AUC-ROC, which may be attributed to a 

low sample size of 540 patients and a high mortality prevalence of 23.0% compared to other 

sites. However, at MSW, local LASSO severely underperformed in comparison to federated 

LASSO, with a difference of 0.351. MSW had the lowest sample size of all hospitals at 485 and 

the lowest COVID-19 mortality prevalence of 5.6%. This pattern emphasizes the benefit of 

federated learning for sites with small sample sizes and large class imbalance. 

 

We also assessed the impact of adding noise to federated MLP. Training metrics were similar to 

federated MLP without noise insertion (Supplemental Figure 2). An average difference of 0.013 

in AUC-ROC across all hospitals in these two models demonstrates that noise may be inserted 

to increase data security without severely compromising federated model performance.  

 

We note a few limitations of our study. First, data collection was limited to MSHS hospitals in 

NYC. This may limit model generalizability to hospitals in other regions. Also, this study focused 

on applying federated learning to predict outcomes based on patient EHR data in principle 

rather than creating an operational framework for immediate deployment. As such, there are 

various aspects of the federated learning process that this work does not address such as load 

balancing, convergence, and scaling. These models included only clinical data and could be 

enhanced by incorporating other modalities such as imaging or free-text. We only implemented 

two widely used classifiers within this framework, but other algorithms may perform better. 
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Finally, identical MLP architectures were used across all learning strategies for direct 

comparisons but could have been further optimized. 

 

Future work will focus on accessibility and expanding analysis of federated models. We plan to 

release code written within common data model EHR formats to better facilitate scalability. We 

will study salient features of importance for federated models and analyze changes as data are 

added. Finally, we will integrate additional data types such as images to improve model 

performance. We aim to use this federated learning framework to predict other adverse 

outcomes in hospitalized COVID-19 patients such as acute kidney injury. 

CONCLUSION 

Federated learning is an effective method to share ML models without jeopardizing patient 

privacy. It is invaluable in the context of COVID-19, where limited data are segregated across 

various institutions. We demonstrated that federated learning models outperformed locally 

trained models to predict mortality. Federated learning offers a promising opportunity to 

construct more robust predictive models that can be leveraged in this pandemic. 
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FIGURE CAPTIONS  

Figure Labels 

 

Figure 1. Study Design and Model Workflow.  

(A) Criteria for patient inclusion in study. (B) Overview of local and pooled models. Local models 

only utilize data from the site itself while pooled models incorporate data from all sites. Both 

local and pooled MLP and LASSO models were utilized. (C) Overview of federated model. 

Parameters from a central aggregator are shared with each site, and sites do not have direct 

access to clinical data from others. After models are trained locally at a site, parameters with 

and without added noise are sent back to the central aggregator to update federated model 

parameters. A federated LASSO and federated MLP model were utilized. 

 

Figure 2. Federated Model Training.  

Performance of (A) federated MLP and (B) federated LASSO models as measured by area 

under the receiver-operating characteristic (AUC-ROC) versus the number of training epochs. 

Binary Cross-Entropy Loss of (C) Federated MLP and (D) Federated LASSO versus the number 

of training epochs.  

 

Figure 3. Model Performance by Site. 

Performance of all models (LASSO local, LASSO pooled, LASSO federated, MLP local, MLP 

pooled, MLP federated (no noise) by area under the receiver-operating characteristic (AUC-

ROC) at (A) Mount Sinai Brooklyn (MSB) (n=611) (B) Mount Sinai West (MSW) (n=485), (C) 

Mount Sinai Morningside (MSM) (n=749), (D) Mount Sinai Hospital (MSH) (n=1644), and (E) 

Mount Sinai Queens (MSQ) (n=540). Averages of receiver-operating characteristic after 10-fold 
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cross validation are shown. Average performance of each model across all five sites is 

presented in (F).   
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